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Abstract

Numerical solutions of hypersingular integro-differential equations are discussed in the analysis of interfacial crack in two
and three dimensional bimaterials subjected to general internal pressure. The problem is formulated on the basis of the body
force method. In the numerical analysis, unknown body force densities are approximated by the products of the fundamental
density functions and power series, where the fundamental density functions are chosen to express singular behavior along the
crack front of the interface crack exactly. The present method gives rapidly converging numerical results and highly satisfied
boundary conditions throughout the crack boundary. The stress intensity factors are given with varying the material
combination and aspect ratio of the crack. It is found that the stress intensity factors K, and K, are determined by the
bimaterials constant £ alone, independent of elastic modulus ratio and Poisson's ratio.
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Introduction

In recent years, composite materials and adhesive or
bonded joints are being used in wide range of
engineering field. The fracture of composites and bonded
dissimilar materials is induced mainly from the
interfacial region because the angular corner of bonded
materials induces singular stress and crack initiation at
the interface. Particular flaws or cracks lying along the

interface reduce the strength of the structure significantly.

Hence, analysis of interfacial cracks in dissimilar
materials is very important from the view point of
interfacial strength.

In the present paper, the two-dimensional interfacial
crack subjected to bending stress, and the
three-dimensional interfacial rectangular crack subjected
to tension(Fig.1) will be analyzed on the basis of
integro-differential equations. P
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Fig.1. Interfacial rectangular crack subjected to general

internal pressure  p (x, ), p, (x,y)and p_(x,y).
Hypersingular integro-differential equations and
numerical solutions

Consider two dissimilar elastic half-spaces bonded
together along the x—y plane with a fixed rectangular
Cartesian coordinate system X, ( I=X,y,Z ).
Suppose that the upper half-space is occupied by an
clastic medium with constants(z,, v,), and the lower
half-space by an elastic medium with constants (4,, ;) .
Here, u,,u, are shear modulus for space 1 and space 2,
and v ,V, are Poisson’s ratio for space 1 and space 2.
The crack is assumed to be located at the bimaterial
interface.

Hypersingular intergro-differential equations for two

dimensional cracks when y _, - On a bimateral interface
are shown in Eq(1)"".
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Here Au_, Au_are the crack opening displacements.

Hypersingular intergro-differential equations for three
dimensional cracks on a bimateral interface were derived
by Chen—Noda-Tang (1999) and expressed as shown in
Eq.(2)™.
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In Eq.(2), unknown functions are crack opening



displacements Au, (x,y),Au, (x,y),Au,(x,y) , Here,
&nl) isa rectangular coordinate (x,y,z) where the
displacement discontinuities are distributed, the notations
D, » P, ., p, denote surface tractions in the
x,y,z directions at the crack surface. Smce the integral
has a hypersingularity of the form r~ when x=¢
and y=rn, the integration should be interpreted in a
sense of a finite part integral in the region S.
Numerical solutions for Eq.(2)

In the present analysis, the fundamental densities and
polynomials have been used to approximate the unknown
functions as continuous functions. First, we put

Au (&) =w(E.MF.(E.n),
Au, (&) =w,(EME, (&), )
A, (E,m)=w.(&MF.(&.1).

The fundamental densities w(,,7)lead to express the
oscillation stress singularity and overlapping of crack
surfaces along the crack front exactly.
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To satisfy the boundary conditions for the rectangle
region of the interfacial crack, FE(&,n)i =x,y,z)can be
approximated by polynomials, for example:

a,. """ +an +a,.¢
ta, ,Sn+to,in" + e, & a8

Fx(faﬂ)=% +tan -+t

et £ = 3G ) )
(me1)(nt1),

G, (&) =1, G (&m)=n. .G, (&n)=¢,
G (Em)=¢"n"

Results and Discussions

In Fig.1,the stress intensity factors X,, K, and the
dimensionless stress intensity factors F,, F, are defined
as the following.
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Table 1 shows the dimensionless stress intensity
factors F, and F, when g4/ph— o under general
internal pressure p, , p, (y/a)’ and p, (y/a)’ . These
results are obtained by applying a similar numerical
solution described above. For constant pressure
p.(y) = p,, the exact solution is obtained at M =1. For
p.(»)=p, (y/a)2 , the exact solution is obtained at
M =3 . Generally for p_ (y)=p,(y/a)’ , the exact

F, +iF, =

yip T2UEE, (X, )

solution is obtained at M =n+1.

Table 2 shows the dimensionless stress intensity factors
F, and F, at the point (x,y)=(0,b)in Fig.1. It is
found that dimensionless stress intensity factors F, and
F, are constant for the variation of the shear modulus
ratio g,/ and Poisson's ratiov,, v, =00 0.5ife is
constant. In other words, the stress intensity factors K,
and K, of planer interface cracks in bimaterials are
determined by the bimaterial constant & alone,
independent of the shear modulus ratio and Poisson's
ratio, and of course, Young’s modulus ratiot®’.

Table 1 Dimensionless stress intensity factors F, and
F, at £=0.02when alb — oo with M.
2 3
p.(»)=p, r.(¥)=p, [Zj r.(¥)=p, [Zj
a a
M F, Fy, F, Fy, F, Fy
10000 0.0400 0.0000 0.0000 0.0000 0.0000
2 | 1.0000 00400 | 02500 0.0010 0.1248 0.0010
3 | 1.0000 00400 | 04992 0.0333 02219 0.0178
4 | 1.0000 00400 | 0.4992 0.0333 03741 0.0333
5 | 1.0000 00400 | 04992 0.0333 03741 0.0333
6 | 1.0000 0.0400 0.4992 0.0333 0.3741 0.0333
7 | 1.0000 00400 | 04992 0.0333 03741 0.0333
8 | 1.0000 00400 | 04992 0.0333 03741 0.0333

Table 2 Dimensionless stress intensity factors F, and
F, at the point (x,y)=(0,b)in Fig. 1 under constant
pressure p, .

F Fy
E a/b=1 a/b=2 a/b=4 a/b=8 a/b=1 a/b=2 a/b=4 a/b=8
0.02 0.7528 0.9052 0.9760 0.9947 0.0274 0.0352 0.0388 0.0397
0.04 0.7509 0.9038 0.9750 0.9938 0.0542 0.0696 0.0768 0.0786
0.06 0.7478 0.9013 0.9730 0.9920 0.0799 0.1027 0.1134 0.1160
0.08 0.7433 0.8975 0.9699 0.9891 0.1040 0.1338 0.1479 0.1515
0.10 0.7373 0.8921 0.9654 0.9848 0.1263 0.1627 0.1801 0.1845
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